Частотный преобразователь: принцип работы и построение схемы

Довольно часто у многих радиолюбителей или просто хозяйственных людей возникает необходимость в регулировании частоты вращения трехфазного двигателя. Использовать для этого банальный регулятор мощности нет смысла, потому что он построен на принципе изменения напряжения, а ведь, как известно, двигатели переменного тока не хотят регулироваться таким способом, даже однофазные.

Обороты, конечно, будут изменяться, но только в небольшом и практически незаметном пределе, после чего при достижении нижнего порога, а при питании 220 В при напряжении 150 В, обороты и вовсе останавливаются. Если с вала необходимо получит еще и нормальный момент, например, при регулировании скорости движения конвейера или протяжной рейки, в зависимости к чему он подключен, то подойдет только частотный преобразователь.

Что такое частотное преобразование

Под понятием частотное преобразование, а далее и частотный преобразователь, следует понимать целую систему, которая нечто делает. А именно преобразует частоту питающего обмотки асинхронного двигателя напряжения. То есть акцентируем ваше внимание на том, что здесь изменяется не напряжение, а именно его частота. В таком режиме управления момент на валу двигателя сохраняется при изменении его скорости вращения.

Но чтобы сделать преобразователь частоты своими руками, необходимо вспомнить конструкцию и возможные характеристики работы асинхронных двигателей. Более того, решая конкретно изготовить такое устройство, первым делом необходимо найти подходящий по параметрам двигатель, который справится с возлагаемой на него работой в составе готового комплекса.

Выбор двигателя

Для проектирования самодельного частотника сначала стоит вспомнить, что такое асинхронный двигатель и как он работает. Несинхронный двигатель или ДПТ представляет собой механическое устройство, состоящее из статора с обмотками возбуждения и ротора. Второй компонент может быть:

  • короткозамкнутым, то есть средние проводники соединены по торцам кольцами, а сами они толстые и короткие, из-за чего конструкция получила название «беличье колесо»;
  • фазным, ротор имеет несколько обмоток, которые присоединены к токосъемным кольцам, применяемым для отвода напряжения в режиме генератора.

Принцип действия двигателя очень прост и заключается во влияние создаваемого в статоре вращающегося магнитного поля на короткозамкнутый ротор, в котором возникает ЭДС. Из-за этого в роторе начинает протекать ток, что ведет к образованию сил, взаимодействующие с магнитным полем статора. При этом частота вращения ротора и магнитного поля неравны, оттого и название асинхронный двигатель.

Разумно предположить, что если изменить частоту питающего статор напряжения, то и измениться скорость вращения ротора. На деле оно так и есть, поэтому все серьезные компании используют именно частотные преобразователи для управления такими моторами. Когда проектируется схема частотного преобразователя для электродвигателя своими руками, следует учесть тип мотора и все его характеристики. В частности, мощность, число полюсов и максимальную скорость вращения. Скачать готовые схемы можно с интернет-журнала «Радиокот». Там их представлено очень много.

Получение магнитного поля

Для получения вращающегося магнитного поля трехфазного, необходимо через виток катушки на статоре пропустить ток с необходимой частотой, который будет определяться по формуле: iA = I m sinωt. В результате действия этого тока по оси витка начинает действовать МДС FA. Так как витки в статоре чередуются по фазам, то и пульсация будет иметь такой же характер, создавая общую пульсирующую силу F, являющеюся константой. Она определяется как корень из квадратов сил в двух витках, смещенных относительно друг друга под углом 90ºС.

В результате чего возникает вращение поля с угловой скоростью, выраженную формулой для каждого витка в отдельности: ω =2π f 1. Но для расчета скорости поля во всей машине необходимо учитывать общее количество пар полюсов, выраженное символом p. И тогда скорость поля будет равна: ω 0 =2π f 1 /р. Соответственно, можно высчитать и частоту вращения, выраженную в об/мин: n0 =60 f 1 /р.

Кроме этих данных, необходимо помнить, что характеристики будут отличаться от режима в холостом ходе, то есть при ω = ω 0, и при нагрузке, когда ω ≠ ω 0. А также было бы полезным вспомнить, что под нагрузкой возникает такое понятие, как скольжение, которое появляется из-за отставания ω от ω 0. И оно выражается как: s =( ω 0 — ω)/ ω 0. Это говорит о том, что при построении САУ с увеличением этой величины необходимо автоматически изменять частоту напряжения в обмотках, чтобы обеспечить стабильность скорости при различных нагрузках.

Промышленные частотные привода

Все промышленные частотники обеспечивают различные принципы регулирования скоростью и моментом на валу асинхронных двигателей за счет изменения не только частоты, но и сдвига фаз, времени нарастания управляющих импульсов, динамическим торможением и многими другими параметрами. При этом все это выполняется в автоматическом режиме без дополнительного участия извне. Поэтому промышленная схема частотного преобразователя для трехфазного двигателя состоит из следующих компонентов:

  • Центрального процессора, выполняющего роль формирователя задающих и управляющих импульсов.
  • Силовая часть: выпрямитель и одновременно блок управления, построенный на IGBT — модулях.
  • Блок ввода и вывода данных или просто интерфейс для взаимодействия с пользователем.
  • Преобразователь шины для работы с системой программного управления.

Трехфазный двигатель может быть оснащен датчиком, тогда требуется обратная связь. Датчик может быть оптическим, индуктивным или магнитным. В высоко оборотистых двигателях расчет скорости ведется программно на основании характеристик.

Плюсы использования частотных преобразователей

Недаром человек стал активно применять частотные преобразователи на всех видах предприятий и даже в быту, потому что они намного более экономичны, чем коллекторные двигатели и могут работать в таких условиях, в которых двигатель со щетками быстро выйдет из строя. Кроме всего этого, использование частотного преобразователя дало возможность заменить механические вариаторы с приводными системами, что позволило намного упростить конструкцию оборудования. А учитывая, что ДПТ при работе практически не требует ремонт, то использование ПЧ является просто идеальным решением.

Но следует понимать, что есть пределы регулирования, при которых принцип управления асинхронным двигателем также будет изменяться:

  • При регулировании скорости в диапазоне 16:1 и менее, необходимо применять использовать ПЧ, работающий по вольт — частотной характеристике.
  • Для регулирования в диапазоне 50:1 необходимо использовать бессенсорное векторное регулирование.
  • В больших диапазонах следует применять обратную связь с использованием датчиков или встроенного в ПЧ пид-регулятора.

В любом случае, когда двигатель планируется применять в тяжелых условиях работы, что обычно и бывает, то лучше использовать именно векторное регулирование.

Векторное и частотное регулирование

Чтобы построить качественную систему САУ с управлением асинхронным двигателем, необходимо хорошо разбираться в понятиях, а именно в векторном регулировании или частотном регулировании.

Частотный принцип применяется в системах, где нет надобности жестко контролировать скорость, а важен создаваемый двигателем поток без значительной нагрузки. Но когда требуется с первого оборота обеспечить высокий момент и хорошее тяговое усилие, то следует использовать векторное управление.

Векторные САУ также применяются в следящих системах с небольшими скоростями подач. Например, в станках для подачи столов или шпиндельных суппортов. Здесь не только надо преодолеть инерцию станины, но и обеспечить необходимое усилие при обработке детали.

Проектируя частотник для трехфазного электродвигателя своими руками, необходимо учитывать тип нагрузки, потому что от этого будет зависеть и характеристика управления силовыми ключами для достижения необходимой мощности при минимальных потерях.

Техническая реализация ПЧ

Вот мы и подошли к построению блок-схемы управления асинхронным электродвигателем. И сразу стоит уверить, что практически все производители этого вида преобразователей используют одну и ту же блоку схему, которая может быть применена и вами для конструирования собственного преобразователя. И она состоит из следующих компонентов:

  • Неуправляемого выпрямителя трехфазного 380 В или однофазного 220 В напряжения сети.
  • Шины постоянного тока со встроенным LC — фильтром, состоящей из набора конденсаторов, которые обеспечивают ее стабильный заряд и исключают пульсации при скачках в сети.
  • Инвертора напряжения, преобразующего постоянное промежуточное напряжение в переменное нужной частоты. Он оснащен ШИМ для качественного управления.
  • Асинхронного электродвигателя, которым и осуществляется управление.

Следует сказать, что производители долго шли к созданию идеальной ШИМ, с помощью которой можно было бы стабильно управлять двигателем. И только с появлением IGBT — модулей это стало возможным. Поэтому и для построения своего преобразователя рекомендуется использовать ключи с напряжением не менее 2019 В с учетом возможных пульсаций сети и с хорошим запасом по току. На рынке вполне можно отыскать транзисторы и модули до 100 и более А.

Упрощенная блок схема преобразователя будет выглядеть следующим образом:

  • Выпрямитель, его подключение выполняется по принципу одно или 2-фазной мостовой схеме. Он предназначен для преобразования переменного напряжения в постоянное, пригодное для дальнейшего преобразования частоты от 0 Гц до частоты сети. Промежуточный контур условно состоит из двух блоков:
  • Устройства плавного заряда шины, чтобы не повредит токоведущие линии при заряде конденсаторов. Оно получило название балластного сопротивления.
  • Блок конденсаторов – он же фильтр.

Расчетное напряжение промежуточного контура в √2 раз больше U N. После достижения на шине необходимого уровня постоянного напряжения резистор шунтируется контактной парой. Последний блок в схеме – инвертор. Это окончательный формирователь выходных импульсов, которые затем поступают на двигатель, обеспечивая его вращение с заданной скоростью.

Обобщенное строение силового модуля показано на следующем рисунке:

Для построения инвертора применяются высоко токовые транзисторы, работающие в чисто переключающем режиме. В процессе работы они сильно нагреваются, поэтому устанавливаются на больших радиаторах с большой площадью рассеивания тепла.

Для проектирования схемы управления инвертором, необходимо себе четко представить порок работы ключей. Для этого обратите внимание на рисунок ниже:

На нем представлены временные интервалы для каждого из ключей, установленных именно в таком порядке, как было показано на прошлом рисунке. То есть в фазе U работают транзисторы Т1 и Т4, в фазе V – Т3 и Т6 и так далее. Для каждой из обмоток двигателя свая пара IGBT. При построении ПЧ для маломощных моторов с небольшими токами можно использовать простые биполярные или полевые транзисторы.

На временной диаграмме видно, что в первый момент времени открываются транзисторы Т1, Т5 и Т6. Далее, транзистор Т1 и Т6 продолжают быть открытыми, в то время, как Т5 закрывается и открывается Т2 и так далее. Эта диаграмма полностью повторяет диаграмму напряжений в 3-фазной сети, но только импульсы имеют прямоугольную форму и имеют заданную контроллером частоту.

В результате получается своего рода циклическое переключение транзисторов, при этом ток в фазах получается сдвинут на 120º относительно друг друга. А для получения управляющего напряжения, состоящего из множества импульсов, в виде синусоидального сигнала с минимальным числом гармоник, пользуются отношением времени включения и выключения транзисторов.

Чтобы минимизировать потери в двигателе, которые обычно возникают при попытках регулирования за счет уменьшения напряжения на обмотках двигателя, прибегают к увеличению частоты.

Принцип регулирования скорости

Для изменения скорости вращения вала двигателя необходимо изменить частоту f 1, но делать это следует осторожно. Ведь необходимо сохранить ток намагничивания неизменным. Для поддержания этого баланса U 1 должны быть пропорционально f 1. но если баланс нарушен, то ток намагничивания будет либо уменьшаться, либо увеличиваться. Соответственно, поле будет ослабляться или перенасыщаться. Чтобы обеспечить это u / f -характеристику выбирают линейной до достижения угловой частоты. Она наступает тогда, когда напряжение на обмотках повышается до максимальной отметки.

Различные ПЧ,
которые нашли применение в частотных
асинхронных ЭП, можно разделить на две
группы, отлича­ющиеся используемыми
техническими средствами и структурой.

Первую
группу составляют так называемые
электромашинные
вращающиеся ПЧ,
в
которых для получения переменной частоты
используются обычные или специальные
электрические машины. На рис. 5.15 приведена
схема ПЧ с синхронным генератором 4,
от

которого
питаются три асинхронных двигателя
5…
7.
Преобразо­ватель
состоит из двух частей: агрегата
постоянной скорости, вклю­чающего
в себя асинхронный двигатель 1
(вместо
него может быть использован двигатель
любого типа) и приводимый им во враще­ние
генератор постоянного тока 2,
и
агрегата переменной скорос­ти,
состоящего из регулируемого двигателя
постоянного тока

3,
при­водящего
во вращение синхронный генератор
переменной часто­ты. Двигатель 1
питается
от сети со стандартной частотой f
= 50 Гц, а на выводах синхронного генератора
4
частота
и напряжение мо­гут регулироваться.
С помощью резистора R1,
в цепи обмотки воз­буждения генератора
2
изменяется
напряжение, подводимое к яко­рю
двигателя 3,
и
тем самым его скорость и скорость
генератора 4.
При
этом меняется частота напряжения на
выводах синхронного генератора 4,
определяемая
выражением fРЕГ
=рωсг
/(2π),
а
значит, и на двигателях 5… 7. Напряжение
на этих двигателях регулируется с
помощью резистора R3
включенного
в цепь обмотки возбуждения синхронного
генератора 4.

Применение
ПЧ позволяет плавно регулировать
скорость дви­гателей 5… 7 в широком
диапазоне, однако процесс регулирования
частоты в электромашинном ПЧ имеет
существенные недостатки
. Для создания
такого преобразователя необходимы
четыре элек­трические машины,
рассчитанные на полную мощность
потребите­лей (группы АД), что определяет
его громоздкость и высокую цену, особенно
при больших мощностях нагрузки. Двойное
преобразо­вание энергии — энергии
переменного тока с частотой f
= 50 Гц в энергию постоянного тока и затем
опять в энергию переменного тока
регулируемой частоты — сопровождается
потерей энергии во всей цепи, определяя
невысокий КПД системы
.

В
настоящее время большое распространение
получили стати­ческие
ПЧ,
названные
так потому, что в них используются не
имею­щие движущихся частей элементы
и устройства, такие как полу­проводниковые
приборы, реакторы, конденсаторы и др.
Развитие статических ПЧ особенно
ускорилось в связи с массовым произ­водством
тиристоров и силовых транзисторов.
Использование ста­тических ПЧ позволило
повысить технико-экономические показатели
регулируемого частотного ЭП: увеличить
его КПД и быстродействие, устранить шум
и упростить обслуживание. Статические
ПЧ могут быть без звена постоянного
тока с непосредственной связью питающей
сети и нагрузки и с промежуточным звеном
постоянного тока
.

Схема
ПЧ
без звена постоянного тока
(позиция
1
на
рис. 5.16) включает в себя силовую часть
3, с которой
связан асинхронный двигатель 4,
и
блок управления 2.
С
и помощью этой схемы осуществляется
преобразование электрической энергии
переменного тока стандартных напряжения
U1,
и частоты f1
в энергию переменного тока с регулируемыми
напряжением U1РЕГ
и частотой f1рег.
Силовая часть ПЧ выполняется на базе
полупроводниковых приборов (тиристоров
или транзисторов), управляемых сигналами
с блока 2, и в некоторых случаях содержит
co­гласующие
трансформаторы.

Изменяя с помощью
системы управления момент подачи
импульсов на тиристоры, можно регулировать
напряжение нагрузки от 0 (α = 90°) до
максимального значения (α = 0).

Билет №14

Впервые мир познакомился с таким устройством, как трехфазный асинхронный

электродвигатель

, еще в конце 19 столетия. И начиная с того времени, его стали применять на каждом промышленном предприятии, где он стал обязательным элементом. Во время эксплуатации электродвигателя важно обеспечить его плавный пуск и остановку. Это можно сделать только при наличии специального устройства – преобразователя частоты.

В первую очередь, целесообразно оснащать преобразователем крупные электродвигатели, обладающие высокими показателями мощности. Польза от наличия такого устройства заключается в возможности менять пусковые токи, задавая необходимую их величину.

Принцип работы частотного преобразователя

Конечно, можно регулировать пусковой ток и вручную, однако в этом случае будет тратиться определенное количество энергии впустую, что негативным образом скажется на эксплуатационном ресурсе электродвигателя. Наблюдаемый в устройствах, не имеющих подобного приспособления, ток имеет величину, превышающую в 5-7 раз номинальное напряжение. В таких условиях невозможно создать нормальные условия для работы оборудования.

Действие такого устройства, как преобразователь частоты, основывается на использовании электронного механизма, который контролирует работу двигателя. Но его возможности не ограничиваются лишь мягким пуском. При помощи преобразователя частоты можно осуществлять плавную настройку работы привода, выбирая оптимальный показатель между напряжением и частотой, который рассчитывается строго по заданной формуле.

Среди достоинств такого устройства главным следует назвать то, что оно помогает уменьшить расход электроэнергии в среднем на 50%. К тому же частотный преобразователь позволяет выставлять такой режим работы, который будет в максимальной степени учитывать потребности определённого производства.

Действие подобного преобразователя основывается на принципе двойного преобразования напряжения.

  1. На начальном этапе выполняется регулировка напряжения сети путем его выпрямления и фильтрования, что достигается посредством использования системы конденсаторов.
  2. Далее настает черед электронного управления, благодаря которому для тока выставляется частота, соответствующая заранее выбранному режиму.

В результате возникают прямоугольные импульсы, которые корректируются обмоткой статора двигателя, что позволяет вывести ее на уровень синусоиды.

На что обратить внимание при выборе?

Если обратить внимание на доступные сегодня модели преобразователей, то определяющим фактором становится именно цена частотника . Дело в том, что наибольшим функционалом обладают лишь дорогие модели пребразователей частоты. Однако, чтобы выбираемый преобразователь смог успешно справляться с необходимыми задачами, нужно исходить из конкретных условий его использования.

  • Преобразователь частоты может предусматривать два типа управления: векторное и скалярное. В первом случае можно выставить с высокой точностью необходимую величину тока. Особенностью скалярного управления является то, что устройство работает лишь в одном заданном соотношении между частотой и напряжением на выходе. Такие устройства могут использоваться лишь для обычных бытовых устройств, наподобие вентилятора.
  • Характеристики мощности во многом влияют на универсальность преобразователя частоты. Это не только расширяет его возможности, но и создает меньше проблем при обслуживании.
  • Для работы устройства должна быть предусмотрено сеть, обладающая максимально широким диапазоном напряжения. В этом случае уменьшается опасность, что устройство выйдет из строя в случае резких скачков. Наибольшую угрозу для оборудования представляет повышение напряжения, что может привести к взрыву сетевых конденсаторов.
  • Важным параметром является и частота, значение которой должно быть достаточным для удовлетворения потребностей производства. По его нижнему пределу можно понять, насколько широкие возможности имеются для выбора оптимальной скорости привода. Если имеется необходимость в устройстве, обладающем более широким диапазоном частоты, то следует обратить внимание на модели с векторным управлением. На практике же наиболее распространены частоты с диапазоном 10-60 Гц, в редких случаях используются до 100 Гц.
  • Наличие различных входов и выходов, используемых для управления. Гораздо удобнее пользоваться устройством, у которого количество подобных разъемов достаточно велико. Однако это же приводит к увеличению стоимости оборудования, а также создает трудности с правильной настройкой. В устройствах подобного типа могут быть предусмотрены три типа разъемов: дискретные, цифровые, аналоговые. Основное назначение первых заключается во вводе команд управления и вывода сообщений о событиях. При помощи цифровых разъёмов осуществляется ввод сигналов цифровых датчиков. Аналоговые же разъемы призваны решать задачу по вводу сигналов обратной связи.
  • При выборе модели преобразователя следует обращать внимание на шину управления, характеристики которой должны соответствовать возможностям схемы частотного преобразователя, что проявляется в соответствующем количестве разъемов. Оптимальный вариант, когда их имеется достаточное количество на случай возможной модернизации.
  • Перегрузочные способности. Рекомендуется отдавать предпочтение моделям частотников, запас мощности которых на 15% превосходит мощность используемого двигателя. Во избежание ошибок не помешает перед принятием решения ознакомиться с документацией. В них обычно приводятся все основные характеристики двигателя. Если стоит задача подобрать частотник, способное выдерживать пиковые нагрузки, то рекомендуется отдавать предпочтение оборудованию, которое сможет сохранять значение тока в условиях пиковой работы на 10% больше указанного.

Материалы

Чтобы сделать своими руками частотный преобразователь для однофазного электродвигателя, необходимо подготовить следующее:

  • IR2135(IR2133) – драйвер трёхфазного моста;
  • AT90SPWM3B – микроконтроллёр (используется как генератор PWM);
  • программатор (например, AVReAl);
  • шесть штук транзисторов IRG4BC30W;
  • ЖКИ индикатор;
  • шесть кнопок.

Самостоятельная сборка преобразователя частоты

Не стоит отказываться от идеи сделать своими силами преобразователь. Эту задачу решить по силам любому владельцу, учитывая, что в сети можно найти

большое количество инструкций и схем

по сборке подобного устройства и его подключению к

асинхронному двигателю

.

Рассматривая такой вариант, главное, о чем следует помнить – собираемая своими руками модель должна отличаться не только доступной ценой, но и надежностью, а также быть способна успешно решать задачи в бытовых условиях. Если же имеется потребность в устройстве для промышленного использования, то, естественно, оптимальным выбором будут преобразователи, предлагаемые магазинами.

Порядок действий по сборке схемы частотного преобразователя

Приводимая ниже схема рассчитана на проводку с напряжением 220В и одной фазой. Устройство предназначено для двигателя, мощность которого не превышает 1 кВт.

Вначале необходимо соединить между собой обмотки двигателя, для чего используется вариант «треугольник».

Основу конструкции оборудования образуют две платы. Первая будет уступать место для размещения таких элементов, как блок питания и драйвер. Помимо них здесь будут установлены транзисторы и силовые клеммы. Вторая плата используется для крепления микроконтроллера и индикатора. Для соединения плат друг с другом используется гибкий шлейф.

Для изготовления импульсного блока питания используется обычная схема, которую можно найти в сети.

Чтобы контролировать работу двигателя, нет необходимости воздействовать на ток при помощи внешних устройств. Однако нелишним будет добавить в конструкцию микросхему(IL300) путем введения линейной развязки.

Общий радиатор используется для размещения не только транзисторов, но и диодного моста.

Обязательным является наличие оптронов ОС2-4, назначение которых заключается в дублировании кнопок управления. На ОС-1 возлагается задача по выполнению пользовательских функций.

Если выбираемый частотный преобразователь имеет одну фазу, то он может работать без трансформатора. Альтернативой ему может служить токовый шунт, который выполняется в виде четырех витков манганинового провода сечением 0,5 км на оправе 3мм. Используемый шунт можно дополнить и усилителем DA-1.

Если мощность двигателя составляет 400 Вт, то он может работать и без термодатчика. С задачей по измерению напряжения сети успешно может справиться и DA-1-2 (усилитель).

Следует позаботиться о защите кнопок, установив на них пластиковые толкатели, управление же осуществляется посредством опторазвязки.

Если будут присутствовать длинные провода, то к ним следует добавить помехоподавляющие кольца.

Во время работы ротора двигателя можно выбирать любую скорость пределах частоты 1: 40. В режиме работы малых частот следует задействовать режим фиксированного напряжения.

Подключение частотного преобразователя

Если используемая проводка имеет одну фазу и напряжение 220В, то в качестве предпочтительной схемы подключения используется вариант «треугольник». Важно помнить о том, что ток на выходе может быть больше номинального не более, чем на 50%.

Если речь идет о трехфазной проводке с напряжением 380В, то для подключения к двигателю частотного преобразователя выбирается схема «звезда». Для простоты выполнения этой процедуры на преобразователе присутствуют клеммы, на поверхности которых имеются подсказки в виде букв.

  • R, S, T– к этим контактам подводят провода сети в любом порядке;
  • U , V , W – при помощи их выполняется включение асинхронного двигателя (в тех случаях, когда двигатель работает в режиме реверса, для возвращения к нормальному вращению достаточно любой из двух проводов поменять местами на контактах).

Обязательно в конструкции имеется клемма, используемая для заземления.

Рекомендации по обслуживанию оборудования

Чтобы собранный своими руками частотный преобразователь смог успешно выполнять свои функции на протяжении длительного времени, владелец должен выполнять следующие рекомендации:

  1. Следить за состоянием внутренних элементов, не допуская скопления на них пыли. При необходимости используют небольшой компрессор, поскольку пылесосу может быть не под силу удалить пыль, лежащую плотным слоем.
  2. Проверять работоспособность узлов и менять их при необходимости. Нормальным для электролитических конденсаторов считается срок службы длительностью 5 лет, для предохранителей – 10 лет. Вентиляторы охлаждения следует менять уже по прошествии 2-3 лет эксплуатации. Внутренние же шлейфы допускается использовать не более 6 лет.
  3. Необходимо следить за температурой внутренних механизмов, а также напряжением на шине постоянного тока. В случае роста температуры возникает опасность засыхания термопроводящей пасты, что может закончиться выходом из строя конденсаторов. Необходимо взять за правило наносить не реже как минимум каждые три года новый слой пасты на силовые компоненты привода.
  4. Необходимо в точности соблюдать условия эксплуатации. Оптимальным считается температурный режим окружающей среды на уровне до + 40 градусов. Крайне негативное влияние на работу элементов оказывают повышенная влажность и запыленность воздуха.

Заключение

Частотный преобразователь является необходимым оборудованием, повышающим эффективность работы асинхронного двигателя. При необходимости его можно изготовить своими силами. Для этого достаточно подготовить необходимые материалы и в точности следовать схеме сборки. При этом следует уделить особое внимание обслуживанию частотного преобразователя, так как при отсутствии должного внимания к его состоянию это оборудование может довольно скоро выйти из строя, что негативным образом скажется и на работе электродвигателя.