Принцип работы и управления униполярного шагового двигателя

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Устройство и принцип работы

Рис. 1. Принцип действия шагового двигателя

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Типы шаговых двигателей

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие  с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется  из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.

С переменным магнитным сопротивлением

Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же синхронный двигатель, в котором поворот ротора идет в соответствии с полем статора.  Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от  5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.

С постоянным магнитом

Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси.  Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.

Устройство гибридного шагового двигателя

Преимущества гибридного шагового двигателя заключатся в его высокой точности, плавности и скорости перемещения, малым шагом – от 0,9 до 5°. Их применяют для высококлассных станков ЧПУ, компьютерных и офисных приборах и современной робототехнике. Единственным недостатком считается относительно высокая стоимость.

Для примера разберем вариант гибридных ШД на 200 шагов позиционирования вала. Соответственно каждый из цилиндров будет иметь по 50 зубцов, один из них является положительным полюсом, второй отрицательным. При этом каждый положительный зубец расположен напротив паза в отрицательном цилиндре и наоборот. Конструктивно это выглядит так:

Расположение пазов гибридника

Из-за чего на валу шагового двигателя получается 100 перемежающихся полюсов с отличной полярностью. Статор также имеет зубцы, как показано на рисунке 6 ниже, кроме промежутков между его компонентами.

Рис. 6. Принцип работы гибридного ШД

За счет такой конструкции можно достичь смещения того же южного полюса относительно статора в 50 различных позиций. За счет отличия положения в полупозиции между северным и южным полюсом достигается возможность перемещения в 100 позициях, а смещение фаз на четверть  деления предоставляет возможность увеличить количество шагов за счет последовательного возбуждения еще вдвое, то есть до 200 шагов углового вала за 1 оборот.

Обратите внимание на рисунок 6, принцип работы такого шагового двигателя заключается в том, что при попарной подаче тока в противоположные обмотки происходит подтягивание разноименных полюсов ротора, расположенных за зубьями статора и отталкивание одноименных, идущих перед ними по ходу вращения.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему  легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.

Униполярный ШД

Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.

Схема а) с различными, б) с одним выводом

Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.

Биполярный шаговый двигатель

В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта  можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс  или серию импульсов в определенной последовательности.  В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата.  При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Полношаговый  – в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Схема управления от контроллера с дифференциальным выходом

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль)  происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному  USB порту.

Полезное видео

Шаговым двигателем называют электромеханическое устройство, преобразующее электрические сигналы в дискретные угловые перемещения вала. Применение шаговых двигателей позволяет рабочим органам машин совершать строго дозированные перемещения с фиксацией своего положения в конце движения.

Применяются в станках с ЧПУ, робототехнике, где требуется дискретные движения, фиксация положения и небольшая скорость.

Отличие и разновидности шаговых двигателей

По принципу работы они ближе к двигателям постоянного тока. Конструкция электродвигателей постоянно совершенствуется для уменьшения трудозатрат при изготовлении, повышения КПД и увеличения количество оборотов. У них по сравнению с двигателем постоянного тока нет щёток, коллектора, а обмотки с меньшим количеством витков.

Среди первых двигателей был создан миниатюрный двигатель для ручных часов и назван в честь французского инженера Мариус Лавета. Статор расцеплен на краях или в районе ротора имеет небольшие сужения. Ротор диаметром 1.5 мм, магнитный на основе кобальта. Одна обмотка в один ряд питание 1.5 вольта. Угол поворота 90 градусов.

Моторчик лавета применяется также и в медицине для перекачки различной жидкости, а также часто используется в миксерах и блендерах.

В последнее время ведутся разработки пьезоэлектрических двигателей с использованием пьезомагнитного эффекта и применяя в конструкции ферромагнитные материалы. Совершенствуются линейные электродвигатели, у которых вал не вращается, а совершает линейные движения. Для оборудования точной механики российские производители выпускают двигатели с маркировкой серии:

  1. ДШ.
  2. ДШР.
  3. ДШГ.
  4. ДШЛ.
  5. ШД.
  6. ДШЭ

В производстве их участвуют такие предприятия, как НПО «АТОМ», ZETEK, компания Электропривод, Stepmotor, Вексон, НПО РИФ, Саратовский эл. механический, корпорация ВНИИЭМ, ЗАО Уралэлектромаш, АРК «Энергосервис». Производством ШД FL 203, FL 28, FL 57, 35 HS, 57 HS, 17 HD занимаются зарубежные фирмы: Fulling motor, Autonics, Motionking YUHA motor, Jlangsu, Phytron и другие. Ассортимент выпускаемых ШД разнообразный: по типоразмерам, мощности, со встроенным редуктором и платой управления.

Конструкция и принцип работы

Шаговый двигатель состоит из статора и вращающегося ротора. Сердечник статора выполнен в виде набора листов электротехнической стали (штампованных). Это уменьшает вихревые токи и соответственно нагрев. Статор по окружности разбит на 4.6.8 продольных пазов. Применяется и больше. На выступах между пазами располагаются обмотки в виде катушек. Количество пазов соответствует количеству полюсов двигателя. Чем больше полюсов, тем меньше угол поворота ротора, то есть шаг.

Ротор состоит из одного или двух постоянных магнитов, с торцов, металлические пластины которого закреплены с зубьями. При этом плюса S и N постоянного магнита разбиваются на n полюсов, что соответствует количеству зубьев. Это также влияет на величину шага вращения. По конструкции ШД выпускаются трёх типов в зависимости от конструкции ротора:

  • реактивный;
  • ротор из постоянного магнита;
  • гибридный.

Реактивный — ротор выполнен из ферромагнитного материала с продольными пазами, полюсами. Он используется редко, только для выполнения простых задач. В основном из-за того, что у него нет стопорящего момента. Гибридный — ротор изготовлен из двух половинок ферромагнитного материала, с продольными пазами и между ними расположен постоянный магнит. Пазы половинок относительно друг друга, сдвинуты на небольшой угол, для понижения шага. Они чаще всего применяются.

При подаче импульсного напряжения на обмотку статора образуется электромагнитное поле. Взаимодействуя, с ближайшим полюсом постоянного магнита создаётся крутящий момент. Вал двигателя поворачивается на определённый угол. Угол поворота в основном зависит от количества полюсов ротора.

Такой двигатель и будет называться шаговым. Благодаря небольшим размерам ШД серии Em 422 применяется в матричных принтерах.

Методы управления фазами

Управление в основном зависит от количества полюсов и конфигурации обмоток статора. ШД выпускаются в основном со следующими обмотками:

  1. Две обмотки с 4 выводами.
  2. Две обмотки с 6 проводами со средним выводом.
  3. Четыре обмотки — 8 выводов.

Управлять можно двумя методами, использовать однополярное напряжение — униполярное или двухполярное — биполярное. Униполярный шаговый двигатель имеет 4 полюса и 2 обмотки. У четырехфазного каждая обмотка разделена пополам и располагается на противоположных полюсах. Вращение осуществляется поочерёдной подачей напряжения на обмотки. При 6 выводах или 5 тоже 2 обмотки, но с отводом от середины. Обычно средние выводы катушки соединяются вместе на минусовой провод, а плюсовой через управляемые ключи подаётся на обмотки.

Двигатели с биполярным управлением имеют 4 обмотки, по 2 на каждую фазу. Управление происходит при смене полярности обмотки. При таком управлении усложняется схема подключения шагового двигателя, но крутящий момент при этом получается больше. Основные характеристики — напряжение питания, потребляемый ток фазы, шаг, мощность и размер фланца. Посадочные места стандартизированы и указываются как, например, Nema 23. Это соответствует расстоянию между отверстиями под крепление 57 мм.

Способы управления шаговым двигателем

Применение ШД в станках с ЧПУ конкурирует только с сервоприводами, например, в эрозионных станках или принтерах, они даже превосходят их по своим техническим возможностям, себестоимости и простым схемам управления. Управление можно осуществлять на цифровых микросхемах, специализированных — А3977, на программированной PIC16, через ключи или драйверы SMSD 1.5.

Большинство драйверов управляются компьютером через порты RS-232, USB и LPT. Они вырабатывают сигналы управления: шаг, направление, разрешение и обеспечивают дробление шага на ½ до 1/32 и работают с программами: MACH3, KCam, DeskCNC, Turbocnc и другими. Кабелем подключить двигатель к драйверу согласно описанию. Изучив работу программы, запустить в работу несложно. Для включения используется напряжение от 5 вольт до 48 вольт. Исключения составляют двигатели на 220/110 вольт.

Микрошаговый режим привода

Основное время работы ШД происходит в пошаговом или полушаговом режиме, а при пуске и остановке желательно использовать микрошаговый режим для точной фиксации. Пошаговый режим определён конструкцией и импульсным управлением. При микрошаговой работе на обмотки подаются синусоидальные напряжения с нужным сдвигом фаз.

Ротор фиксируется при определённом соотношении фаз токов в обмотках. Расчёт точки равновесия произвести по формуле x = S *pi/2*arctg a/b где:

  • a — момент, создаваемый первой фазой и b — второй фазой;
  • x — точка равновесия ротора или микрошаг в радианах;
  • S — угол шага.

А также надо учитывать максимальную частоту управляющего сигнала, при которой нет потери или добавления лишнего шага в процессе работы. Она является основным показателем переходного режима шагового двигателя и обозначается в характеристиках, как частота приёмистости двигателя.

В процессе эксплуатации необходимо следить за чистотой вокруг привода и не допускать попадания металлической стружки, возможен выход из строя ШД. Найти способ защитить привод. Ремонт аналогичен ремонту коллекторного двигателя, требует аккуратности.

После разборки взять и продуть сжатым воздухом статор и ветошью протереть ротор. Проверить отсутствие биения подшипников.

Во многих своих разработках я применяю шаговые двигатели. Есть области точной механики в которых они просто незаменимы. Я постараюсь как можно проще объяснить, как работает шаговый двигатель, что он из себя представляет.

  • Принцип действия шаговых двигателей.
  • Биполярные и униполярные шаговые двигатели.
  • Виды шаговых двигателей.
  • Управление шаговыми двигателями
  • Недостатки и достоинства шаговых двигателей.
  • Характеристики шаговых двигателей.

Шаговый двигатель это бесколлекторный  синхронный двигатель, ротор которого совершает дискретные перемещения (шаги) определенной величины с фиксацией положения ротора в конце каждого шага.

Т.е. перемещение ротора происходит шагами известной величины. Подсчитав шаги можно определить, на сколько изменилось положение ротора, вычислить его абсолютную позицию.

Объединяя в себе двигатель и позиционирующее устройство без обратной связи, шаговый двигатель является идеальным приводом  в промышленном оборудовании, станках с ЧПУ, робототехнике…

Принцип действия шаговых двигателей

Представьте себе двухполюсный постоянный магнит на валу двигателя – это ротор, окруженный замкнутым магнитопроводом с четырьмя обмотками — статор. Вернее это две обмотки AB и CD с половинками, расположенными на противоположных полюсах статора.

Подключили к источнику напряжения  обмотку AB (полярность + -) как показано на рисунке. Ток в этой обмотке вызовет появление магнитного поля статора с полюсами сверху N, снизу S.

Как известно разноименные полюса магнитов притягиваются.

В результате ротор (постоянный магнит) займет положение, в котором оси магнитных полей ротора и работающих полюсов статора совпадают.  Механическое положение будет устойчивым. При попытке сдвинуть ротор, возникнет сила, возвращающая его назад.

Теперь снимем напряжение с обмотки AB и подадим на обмотку CD (полярностью + -). Ток в обмотке CD вызовет магнитное поле с горизонтальными полюсами, слева S, справа N.

Магнитное поле делает все, чтобы магнитный поток замкнулся по минимальному пути. Ротор повернется в положение указанное на рисунке. Механическое положение ротора опять устойчивое.  Это был первый шаг двигателя. В нашем случае он  равен одной четвертой оборота.

Отключаем обмотку CD и подаем напряжение опять на обмотку AB, но уже в другой полярности (- +). Опять магнитное поле статора повернется на 90°, а за ним и ротор.

Еще одна коммутация AB — отключаем, CD — подключаем (полярность  — +) и ротор совершает еще один шаг на одну четвертую окружности.

Следующая коммутация (с которой мы начали) вернет ротор в исходное положение. Мы сделали полный поворот за 4 шага.

Если продолжить переключение фаз, ротор будет вращаться с частотой, пропорциональной частоте переключения фазных обмоток.

Если коммутировать фазы в противоположной последовательности – крутиться в обратном направлении, прекратить коммутацию — остановится.

Биполярные и униполярные шаговые двигатели

Это был  биполярный шаговый  двигатель.

Биполярный двигатель имеет по одной обмотке для каждой фазы. На предыдущих рисунках это обмотки AB и CD. Для изменения магнитного поля должна обеспечиваться сложная коммутация обмоток. Каждая обмотка:

  • отключается от источника напряжения,
  • подключается в прямой полярности
  • подключается с противоположной полярностью.

Для такой коммутации требуется сложный мостовой драйвер. Примером такого устройства является микросхема L298N. Микросхема обеспечивает ток коммутации до 2 А. Если нужны большие токи, то задача управления биполярным двигателем еще усложняется.

Существует другой способ изменения магнитного поля в статоре с гораздо более простой схемой коммутации. Это применение двигателя с униполярными обмотками.

Схема двух фазного шагового двигателя с униполярными  обмотками и последовательность коммутаций обмоток выглядит так.

У всех четырех обмоток один вывод подключен к плюсовому выводу источника питания. А другие выводы A,B,C,D последовательно коммутируются к минусовому сигналу. Соответствующие обмотки создают магнитное поле, и ротор поворачивается вслед за ним.

Для коммутации обмоток таким способом достаточно четырех ключей, замыкающих обмотки на землю. Ключи часто управляются непосредственно с выводов микроконтроллеров.

Иногда средние выводы обмоток конструктивно объединены внутри двигателя, иногда выводятся все выводы отдельно. Кстати, это не повод называть двигатель четырехфазным. Все равно он будет двухфазным.

Биполярный двигатель обеспечивает, при тех же размерах, больший крутящий момент, по сравнению с униполярным. Оно и понятно. Одновременно  в униполярном двигателе работает только одна обмотка, вместо двух. Выигрыш в моменте у биполярного составляет около 40%.

Зато, если нет необходимости использовать двигатель на полную мощность, униполярным двигателем гораздо проще управлять.

Разновидности  шаговых двигателей

Основные виды шаговых двигателей:

  • с переменным магнитным сопротивлением
  • с  постоянными магнитами
  • гибридные.

Шаговые двигатели с переменным магнитным сопротивлением

У двигателей с переменным магнитным сопротивлением в роторе нет постоянных магнитов. Их ротор выполнен из магнитомягкого материала и имеет зубчатую форму. Магнитный поток замыкается через ближайшие к полюсам статора зубцы. Зубцы притягиваются к полюсам. Этим и обеспечивается вращение.

При тех же размерах, двигатели с переменным магнитным сопротивлением имеют меньший крутящий  момент, чем другие типы шаговых двигателей.

Применяются они довольно редко. Я знаю только одну фирму, которая использовала такие двигатели. Я разрабатывал управление для них. Выбор двигателей именно с переменным магнитным сопротивлением был обусловлен тем, что фирма сама изготавливала все детали двигателя. А сделать ротор  для привода такого вида  намного проще, потому что в нем не используются  постоянные магниты.

Двигатели с  постоянными магнитами

У шаговых двигателей этого вида ротор содержит постоянные магниты. Общий принцип действия шагового двигателя я объяснял на двигателе с постоянным магнитом. Только в реальных двигателях магнитов больше.  Вот пример двигателя с тремя парами полюсов ротора.

У реальных двигателей с постоянными магнитами число шагов на оборот доходит до 48, что соответствует углу шага 7,5 °.

Гибридные двигатели

Гибридные двигатели обеспечивают меньшую величину шага, больший момент и скорость. Число шагов на оборот для такого типа двигателей доходит до 400 (угол шага 0,9°).

При этом они более сложные в изготовлении и более дорогие. Я не хочу забивать читателю голову конструкцией этих двигателей. У них есть и зубчатый ротор, и постоянные магниты. По принципу действия гибридные двигатели эквивалентны двигателям с постоянными магнитами, но с гораздо большим числом полюсов.

Это самый распространенный тип шаговых двигателей.

Управление шаговым двигателем

Существуют три режима  управления шаговым двигателем:

  • полношаговый
  • полушаговый
  • микрошаговый.

Первый способ был описан в примерах выше. Это попеременная коммутация фаз, фазы не перекрываются, в каждый момент времени к источнику напряжения подключена только одна фаза.

Способ называется на английском one phase on full step – одна фаза на полный шаг. Точки равновесия ротора совпадают с полюсами статора.

Недостатком этого режима является то, что в один и тот же момент используется половина обмоток для биполярного двигателя, и только четверть для униполярного.

Есть вариант полношагового режима управления при котором в одно и то же время включены две фазы. Называется two-phase-on full step – две фазы на полный шаг. При таком способе ротор фиксируется между полюсами статора за счет подачи питания на все обмотки..

Это позволяет увеличить крутящий момент двигателя на 40%. Угол шага не меняется, просто ротор в состоянии равновесия смещен на пол шага.

Полушаговый режим.

Этот способ позволяет от двигателя получить в два раза больше шагов на оборот ротора. Каждый второй шаг включается одна фаза, а между ними — включаются сразу две.

В результате такой коммутации угловое перемещение шага уменьшается в два раза, или в два раза увеличивается число шагов.  Полный момент получить в полушаговом режиме не удается. Не смотря на это,  полушаговый режим используется часто. Уж очень простыми методами он удваивает число шагов двигателя.

Надо помнить, что для обоих режимов справедливо то, что при остановке двигателя со снятием напряжения со всех фаз, ротор двигателя находится в  свободном состоянии и может смещаться от механических воздействий. Чтобы зафиксировать положение ротора, необходимо формировать в обмотках двигателя ток удержания. Этот ток может быть значительно меньше номинального.

Способность шагового двигателя фиксировать свое положение при остановке  позволяет обходиться без механических фиксаторов, тормозных систем и т.п.

Микрошаговый режим.

Для получения еще большего числа шагов двигателя применяют микрошаговый режим. Включают две фазы, как на полушаговом режиме, но токи обмоток распределяют не равномерно. Магнитное поле статора смещается между полюсов, смещается и положение ротора. Как правило, диспропорция токов между рабочими фазами происходит с определенной дискретностью, микрошагом. Бывают микрошаги с величиной треть от полного шага. Бывают значительно больше. Я разрабатывал систему управления индукторным приводом, так там было больше 2019 микрошагов.

Микрошаговый режим способен значительно повысить точность позиционирования шагового двигателя.  Хотя система управления приводом становится намного сложнее.

Недостатки и достоинства шаговых двигателей.

Преимущества шаговых двигателей.

  • Точное позиционирование без обратной связи. Число импульсов определяет угол поворота.
  • Двигатель обеспечивает полный крутящий момент при снижении скорости вращения, вплоть до остановки.
  • Двигатель фиксирует свое положение при остановке за счет тока удержания.
  • Регулировка скорости вращения с высокой точностью без обратной связи.
  • Способность быстрого старта, остановки, реверса.
  • Высокая надежность. Отсутствие коллекторных щеток.

Недостатки шаговых двигателей.

  • Сложная система управления.
  • Невысокие скорости вращения.
  • Возможно явление резонанса.
  • Может произойти потеря позиционирования при механических перегрузках.
  • Низкая удельная мощность.

Как и всему на свете шаговому двигателю присущи определенные достоинства и недостатки. Но есть области в точной механике, в которых он просто незаменим. Там где надо перемещать механические узлы, мгновенно останавливать, двигать назад, регулировать скорость… Попробуйте мгновенно остановить коллекторный двигатель, и вы забудете о недостатках шагового.  Попробуйте реализовать изменение скорости коллекторного двигателя в широких пределах. Проще поставить шаговый с его недостатками.

В оборудовании, которое разрабатывал я, например, станок для розлива и запайки ампул содержит 7 шаговых двигателей, станок для фасовки сыпучих препаратов – 10 двигателей. И ни один из этих двигателей я не могу заменить на коллекторный. Если интересно, посмотрите фильм, как работают шаговые двигатели в оборудовании.

Характеристики шаговых двигателей.

Шаговый двигатель с точки зрения механики и электротехники очень сложное устройство, имеющее много механических и электрических параметров. Приведу расшифровку основных технических параметров, которые используются на практике.

  • Количество полных шагов за один оборот. Основной параметр двигателя, определяющий его точность, разрешающую способность, плавность движения. На двигателях серии FL57 этот параметр составляет 200 и 400 шагов на оборот.
  •  Угол полного шага. Представление в другом виде предыдущего параметра. Показывает на какой угол повернется вал при одном полном шаге. Может быть подсчитан как 360° / количество полных шагов за оборот. Для двигателей серии FL57 составляет 1,8 ° и 0,9°.
  • Номинальный ток. Основной электрический параметр. Наибольший допустимый ток, при котором электродвигатель может работать сколь угодно длительное время. Для этого тока указаны механические параметры двигателя.
  • Номинальное напряжение. Допустимое постоянное напряжение на обмотке двигателя в статическом режиме. Часто этот параметр не приводится. Вычисляется по закону Ома через номинальный ток и сопротивление обмотки.
  • Сопротивление обмотки фазы. Сопротивление обмотки двигателя на постоянном токе. Параметр вместе с номинальным током, показывает какое напряжение можно подавать на обмотку двигателя.
  • Индуктивность фазы. Параметр становится важным на значительных скоростях вращения. От него зависит скорость нарастания тока в обмотке. При высоких частотах переключения фаз приходится увеличивать напряжение, чтобы ток нарастал быстрее.
  • Крутящий момент. Основной механический параметр.  Показывает максимальный крутящий момент, который способен создать двигатель. Иногда приводится механическая характеристика в виде зависимости крутящего момента от частоты вращения.
  • Момент инерции ротора. Характеризует механическую инерционность ротора двигателя. Чем этот параметр меньше, тем двигатель быстрее разгоняется.
  • Удерживающий момент. Это крутящий момент при остановленном двигателе. При этом у двигателя должны быть запитаны две фазы номинальным током.
  • Стопорный момент. Момент, необходимый чтобы провернуть вал двигателя при отсутствующем напряжении питания.
  • Сопротивление изоляции. Как у всех электрических приборов – сопротивление между корпусом и обмотками.
  • Пробивное напряжение. Минимальное напряжение, при котором происходит пробой изоляции между обмотками и корпусом.  Параметр из раздела электробезопасности.

Пример практической схемы контроллера шагового двигателя.

Автор публикации


56

Комментарии: 1303Публикации: 147Регистрация: 13-12-2015

В статье рассматриваются практические решения для управления униполярными шаговыми двигателями. Рассматриваемые решения могут быть легко использованы на практике для различных приложений.В настоящей статье даются рекомендации по проектиро­ванию электроприводов униполярными шаговыми двигателя­ми и предлагаются несложные практические решения. По собственному опыту автора статьи, освоение шаговых дви­гателей легче, проще и значительно дешевле начинать имен­но с униполярных шаговых двигателей.

Напомню, что основное свойство шагового двигателя в от­личие от других типов электродвигателей как переменного, так и постоянного тока является то, что сдвиг его ротора осуществляется на заданный его конструкцией шаг (чаще это угол, реже — линейное смещение) при подаче на его обмот­ки импульсов напряжения. В этом он похож на шаговое ре­ле, известное еще с XIX века. Его нельзя путать и с много­фазными двигателями. Формально шаговые двигатели отно­сятся к двигателям постоянного тока, но они не имеют кол­лектора (поэтому надежность их выше и помех от них значи­тельно меньше). Для создания момента вращения в этих двигателях, в отличие от коллекторных двигателей постоян­ного тока, требуется внешнее импульсное управление обмот­ками, которые расположены не на роторе (который пред­ставляет собой постоянный магнит), а на статоре. Другими словами, если вы подадите на обмотку такого двигателя по­стоянное напряжения, то вращения ротора не будет. Нужно специальное устройство управления — коммутатор. В этом они проигрывают традиционным коллекторным двигателям посто­янного тока. Но зато они выигрывают в большем моменте на малых и сверхмалых скоростях вращения, поэтому во многих применениях им не нужен редуктор. Кроме того, они обес­печивают без специальных конструктивных или схемных ухи­щрений точное позиционирование ротора и торможение, так как обладают не только моментом вращения, но и моментом удержания, который по величине выше момента вращения.

Имеются шаговые двигатели не только традиционного исполнения с вращающимся ротором, но и с его линейным перемещением. В последнем случае на один управляющий импульс происходит линейное смещение ротора на строго за­данную конструкцией двигателя величину (подробности см. в [1]). Еще одно важное замечание: шаговый двигатель, в отличие от коллекторного, при стопорении ротора не увели­чивает потребление энергии.

Конструкция двигателя

Шаговые двигатели различаются, как по конструктивно­му исполнению, так и по конфигурации соединения их обмо­ток. Исполнение двигателей в части обмоток может быть би­полярное и униполярное. Основное преимущество униполяр­ных шаговых двигателей заключается в простоте их систем управления, но они имеют меньший момент вращения [1]. На рис.1,а показано «классическое» исполнение включения обмоток, а на рис.1,б — универсальное с расщепленными об­мотками, которое позволяет включать двигатель, как в уни­полярном, так и в биполярном вариантах. Кроме того, в «клас­сическом исполнении» в некоторых типах двигателей сред­ние выводы обмоток (выводы АВ, CD на рис.1,а) могут быть конструктивно объединены внутри самого двигателя (такой вариант как раз показан на фото в начале статьи). Так что если вам попался в руки неизвестный шаговый двигатель, то по количеству выводов вы относительно легко сможете его идентифицировать. Двигатели с шестью и пятью вывода­ми будут гарантировано униполярными. Остается только оп разделить фазировку обмоток. К сожалению, это можно бу­дет сделать только экспериментально. Какой-либо стандарти­зации по цвету проводов пока нет.

Рис. 1

Конфигурация обмоток униполярных шаговых двигателей и двигателей с расщепленными обмотками в униполярном включении позволяет обойтись без сложных драйверов и до­рогостоящих ИМС. Кроме того, классические униполярные дви­гатели дешевле, так как, в основном, этот тип включения об­моток характерен для двигателей на постоянных магнитах с шагом 18° или 7,5°. Дробление такого большого шага осуще­ствляется, как правило, дополнительным редуктором, который может быть конструктивно совмещен с двигателем [2].

Схема управления униполярного шагового двигателя с универсальным коммутатором

Практическое решение для управления униполярным ша­говым двигателем потребовалось автору при использовании двигателя серии P542-M48 [2], а именно униполярного шаго­вого двигателя P542-M482U с встроенным редуктором G23 (125:1). Поскольку двигатель униполярный, то схема его уп­равления, как было указано выше, не содержит ни дорогих ИМС, ни специальных сложных драйверов, достаточно обыч­ных ключей. Коммутатор включения обмоток выполнен на базе технического решения, опубликованного в [3]. Пример практической схемы управления, разработанной автором ста­тьи, которая годится для самых различных применений, по­казан на рис.2.

Рис. 2

Частота вращения двигателя задается внешним тактовым генератором (скважность любая), сигнал с которого подает­ся на вход «STEP» («Шаг»), необходимое направление вра­щения устанавливается через вход «DIRECTION» («Направ­ление вращения»). Оба эти сигнала имеют логические уров­ни, и если для их формирования используются выходы с от­крытым коллектором, то требуются соответствующие резисторы подтяжки (на схеме рис.2 они не показаны). Времен­ная диаграмма работы коммутатора (рис2) показана на рис.3, где верхние две трассы — Q1 D2-2, 02 D2-2; нижние две трассы — Q1 D2-1, Q2 D2-1. Маркеры показывают область изме­нения очередности включения фаз.

Как можно видеть, здесь реализован полношаговый ре­жим управления (подробно см. [1]) с перекрытием фаз, то есть один импульс сдвигает ротор двигателя на один шаг, но в некоторый момент (половина длительности импульса) фа­зы накладываются друг на друга (рис.3).

Рис. 3

Схема управления шаговым двигателем без реверса

Если нет необходимости в реверсе, то схема коммутато­ра может быть значительно упрощена (рис.4), при этом ча­стота вращения остается неизменной, а диаграмма управле­ния остается аналогичной той, которая показана на рис.3 (трассы до переключения очередности фаз), но уже без воз­можности изменения направления вращения двигателя.

Рис. 4

Схема управления с режимами удержания и выключения

Управление моментом вращения устанавливается изме­нением тока в обмотках двигателя от регулируемого источ­ника напряжения положительной полярности (автором исполь­зовался импульсный понижающий стабилизатор, выполненный по типовой схеме на стандартной ИМС с опцией внеш­него включения). Расчет такого DC/DC-преобразователя мож­но легко выполнить в интерактивном режиме [4], хотя за вре­мя, прошедшее со времени публикации, в этот on-line калькулятор высокого уровня и были внесены некоторые из­менения, но основа осталась та же. Полное отключение двигателя без удержания ротора осуществляется снятием пи­тающего напряжения с обмоток. Это легко выполнить через вход выключения преобразователя, задав в [4] при выборе ИМС соответствующую опцию. В авторском варианте исполь­зовалась ИМС LM2675M-ADJ [5]. Остановка с фиксацией ро­тора, режим удержания, осуществляется прекращением по­дачи напряжения с частотой коммутации (вход «STEP»), одновременно желательно уменьшить величину питающего об­мотки напряжения Vdc по крайней мере вдвое. С этой точ­ки зрения выбор преобразователя с возможностью регули­ровки выходного напряжения на ИМС, подобной LM2675M-ADJ, является оптимальным. Пример авторского варианта схемы для формирования напряжения питания обмоток ша­гового двигателя показан на рис.5. Такая схема пригодна для запитки шаговых двигателей любого типа.

Рис. 5

Схема (рис.5) обеспечивает подачу двух стабильных на­пряжений для питания обмоток двигателя: 12 В в рабочем режиме и 6 В в режиме удержания (формулы, необходимые для расчета выходного напряжения, приведены в [5]). Рабо­чий режим включается подачей высокого логического уров­ня на контакт BRAKE (торможение) разъема Х1. Допусти­мость снижения напряжения питания определяется тем, что момент удержания шаговых двигателей превышает момент вращения. Так, для рассматриваемого двигателя момент удер­жания с редуктором (25:6) равен 19,8 Н*см, а момент вра­щения всего 6 Н*см. Но при увеличении отношения эта за­висимость нивелируется и для двигателей с редукторами с от­ношением 80 и выше практически не отличаются. Основное преимущество этого метода в том, что он позволяет умень­шить общее потребление тока. В нашем случае с 460 мА до 230 мА, то есть в 2 раза, а мощность в 4 раза, то есть с 5,52 Вт до 1,38 Вт.

Полное отключение двигателя осуществляется подачей высокого логического уровня на контакт ON/OFF разъема X1. Если схема управления имеет выход на транзисторах с от­крытым коллектором, то в ключах на транзисторах VT1, VT2 нет необходимости, выходы схемы управления можно под­ключить непосредственно вместо упомянутых ключей.

Примечание. В этом варианте использование резисто­ров подтяжки недопустимо!

В качестве дросселя автором использовалась катушка SDR1006-331К (Bourns). Общее питание формирователя на­пряжения для обмоток двигателя в рассмотренных режимах может быть уменьшено до 16…18 В, что не окажет никакого влияния на его функционирование. Еще раз обращаю внимание, что при самостоятельном расчете не забудьте учитывать, что формирователь обеспечивает режим с перекрытием фаз, то есть лучше закладывать номинальный ток схемы питания, равный удвоенному номинальному току обмоток.

Согласно спецификации [2] оптимальным для двигателей серии P542-M48 является шаг с частотой f=(300…500) Гц. Это и будет определять частоту вращения вала, но частота вращения зависит еще и от конструкции самого двигателя. В нашем случае, без учета редуктора, частота вращения составит:

f*7,5°/360°=(6,25-10,5) об/с,

где 7,5° — это угол поворота ротора двигателя на один шаг управления.

Этот угол как раз и задан конструктивно в самом двига­теле. Дальнейшее понижение частоты вращения зависит уже от редуктора.

Изменение частоты вращения двигателя

Частота коммутации обмоток вполне может быть увели­чена до 1,5 кГц. Для этого с целью компенсации уменьше­ния момента вращения неизбежного с ростом частоты при­меняются специальные методы запитки обмоток двигателя. Если внимательно читать спецификацию [2], то можно заме­тить, что момент вращения двигателя (сноска «Standard Versions») задан для двух условий, а именно: для условия обозначенного как L/R и условия, которое обозначено как L/4R. Можно заметить, что во втором случае частота враще­ния ротора шагового двигателя, при котором обеспечивает­ся указанный в спецификации момент, заметно выше, а имен­но 550 Гц вместо 300 Гц. Что это за условия?

Проблема обеспечения момента вращения для шагового двигателя заключается в том, что для них не требуется по­дача напряжения, а требуется обеспечение тока в обмот­ках. Именно этот ток создает магнитное поле статора, вза­имодействующее с постоянным магнитным полем ротора. Мо­мент на роторе двигателя как раз и определяется взаимо­действием этих магнитных полей.

Как известно, ток в индуктивности не может изменяться скачком, а растет по экспоненте до значения

lmax=Vdc/R;

l(t)=lmax*(1-e—t/t).

Требуемое для этого время определяется постоянной вре­мени цепи:

t=L/R,

где:

L — индуктивность обмотки двигателя;

R — общее сопротивление в цепи обмотки.

Это сопротивление может быть как собственным актив­ным сопротивлением обмотки двигателя RL, так и его сум­мой с некоторым добавочным резистором. Как видно из при веденной формулы, скорость изменения тока в обмотке об­ратно пропорциональна ее индуктивности и прямо пропор­ционально сопротивлению. Чем быстрее ток достигнет свое­го максимального уровня

lmax=Vdc/RL,

где Vdc — это номинальное напряжение запитки обмот­ки, a Rl — активное сопротивление в цепи обмотки, тем ско­рее установится заданный момент на роторе. Это и опреде­ляет скорость вращения вала шагового двигателя в зависи­мости от частоты коммутации. Таким образом, наша цель ус­тановить (насколько это возможно быстро) ток в обмотке на уровне Vcd/RL.

Импульсное питание двигателя

Просто увеличить напряжение на двигателе выше номи­нального крайне не желательно, даже если вы уверенны в том, что ток в обмотках при выбранной скорости вращения ротора не превысит допустимый. Остановка двигателя при такой подаче питания может привести к его выходу из строя. Уменьшить время установки номинального тока в обмотке можно, увеличив напряжение Vcd лишь на некоторое вре­мя, которое в несколько раз меньше длительности импульса управления, но это потребует дополнительных ключей, поэто­му этот способ используется крайне редко. Самым простым методом оказывается включение последовательно с обмот­кой двигателя дополнительного сопротивления с одновремен­ным кратным увеличение напряжения питания Vcd. Это и ус­корит накопление тока в индуктивности и не приведет к вы­ходу двигателя из строя, так как требование по максималь­ному току обмотки не будет нарушено. Вот как раз на этот режим и «намекает» спецификация [2].

В классической теории используется режим L/5R, но для рассматриваемого типа двигателя спецификация рекоменду­ет режим L/4R. Обращаю внимание, что здесь имеется в ви­ду общее сопротивление, то есть сумма собственного сопро­тивления обмотки R1 и добавочного резистора номиналом 3RL. Ограничение на использование этого метода наклады­вает высокая рассеиваемая мощность на добавочных рези­сторах. В рассматриваемом случае при повышении напряже­ния питания до 4Vcd на добавочных резисторах при малых скоростях вращения, особенно при остановке двигателя, бу­дет рассеиваться мощность:

PR=(3Vcd)2/3RL=(3*12)2/(3*52,4)=8,24 Вт.

Фактически, с учетом допустимого коэффициента на­грузки придется использовать добавочный резистор номина­лом в 160 Ом с рассеиваемой мощностью 10 Вт. Как видим, эффективность такого решения крайне низкая. Как выход из положения — использование импульсных стабилизаторов с ог­раничением максимального тока.

В данном случае для управления биполярным двигателем был применен драйвер с встроенной функцией нарезки, так называемый, чоппинг (от английского термина «chopping» — нарезка). В чем суть этого метода? На двигатель от импульс­ного преобразователя подается повышенное в несколько раз напряжение, которое формирует ускоренный процесс установления максимального тока обмоток, после достиже­ния заданной величины тока, преобразователь переходит из режима стабилизации напряжения в режим стабилизации то­ка и удерживает ток обмотки на заданном уровне. Это ре­шение нельзя назвать дешевым, но его КПД несравненно вы­ше. Сравнение методов управления током в обмотках дви­гателя показано на рис.6.

Рис. 6

Еще одним важным моментом является правильный вы­бор диодов, шунтирующих обмотку двигателя (VD1-VD4, рис.2). Назначение этих диодов — гасить э.д.с. самоиндукции, воз­никающую при выключении управляющих ключей. Если дио­ды выбраны неверно, то неизбежен выход из строя транзи­сторных ключей и устройства в целом.

Естественно, что и выбор транзистора для ключей уп­равления обмотками должен осуществляться с учетом мак­симального тока коммутации, а его подключение учитывать необходимость заряда/разряда емкости затвора. В ряде слу­чаев прямое подключение выходных MOSFET-транзисторов к ИМС коммутатора может быть недопустимым. В этом случае необходимо предусмотреть соответствующий драйвер для управления ключами, который обеспечит заряд/разряд их входной емкости. В некоторых решениях предлагается в ка­честве ключей использовать биполярные транзисторы. Это подходит только для очень маломощных двигателей с малым током обмоток. Для рассматриваемого двигателя с рабочим током обмоток I=230 мА ток управления по базе ключа дол­жен составить по крайней мере не менее 15 мА (хотя для нормальной работы ключа нужен ток базы 1/10 рабочего, то есть 23 мА). Но такой ток от микросхем типа 74HC74 недо­стижим, поэтому потребуются дополнительные драйверы для выходных ключей.

Таким образом, самым оптимальным для управления ком­мутацией обмоток является использования подходящих по то­ку и сопротивлению канала в открытом состоянии Rdc(on) полевых транзисторов с изолированным затвором (MOSFET) с учетом рекомендаций, описанных выше. В авторском варианте использовали транзисторы IRLML2803 с Rdc(on)=0,25 Ом, допустимой мощность рассеивания 540 мВ и постоян­ным током стока 0,93 А при температуре 70°С. Мощность, рассеиваемая на ключах, выполненных на транзисторах IRLML280, при полной остановке ротора не превысит:

PVT<Rdc(on)*I2=0,25*(0,230)2=13,2 мВт.

В большинстве случаев такой оценки вполне достаточно. Поскольку детальное рассмотрение особенностей работы клю­чей не входит в рамки данной статьи, то для их полного расчета можно воспользоваться методикой, приведенной, на­пример, в [6].

В завершение еще раз небольшое напоминание. Когда речь идет о частоте вращения ротора шагового двигателя, то имеется ввиду именно вращение ротора самого двигателя без редуктора. При этом необходимо учитывать угол пово­рота его ротора на один шаг. Для рассматриваемого типа двигателя он составляет 7,5°. Имеются шаговые двигатели с углом поворота на один шаг от 18° до 0,9° (чаше 1,8°). Для получения конечного результата необходимо обязательно учи­тывать этот параметр и коэффициент понижения частоты вра­щения ротора двигателя соответствующим редуктором. Все необходимые параметры для правильного выбора типа дви­гателя серии P542-M48 приведены в спецификации [2].

Литература

  1. Рентюк В. Шаговые двигатели и особенности их приме­нения // Электрик. — 2012. — №11.
  2. Geared stepper motor Р542-М48 series, Mclennan Servo Supplies Ltd.mclennan.co.uk.
  3. Rentyuk V. Control stepper motors in both directions // — 2010. — March 18.
  4. Рентюк В. Проектирование DC/DC-преобразователей в системе WEBENCH Design Center // Электрик. — 2013. — №10.
  5. LM2675 SIMPLE SWITCHER Power Converter High Efficiency 1A Step-Down Voltage Regulator, Texas Instruments Inc., Rev. June 2005.
  6. Дьяконов В.П., Маскимчук A.A., Ремнев A.M., Смердов В.Ю. Энциклопедия устройств на полевых транзисторах. — М.: СОЛОН-Р, 2002.

Автор: Владимир Рентюк, г. Запорожье, Украина

Возможно, вам это будет интересно:

Главная

/

Реестр

/ Что такое шаговый двигатель, конструкция, где применяется?

Шаговый двигатель представляет собой устройство, преобразующее электрическую энергию в механическую. По конструкции это бесколлекторный синхронный мотор с ротором, совершающим дискретные перемещения с фиксацией положения после каждого смещения. Величина шага строго определена, что позволяет вычислять абсолютную позицию ротора, подсчитав количество шагов.

Принципы действия биполярных и униполярных шаговых двигателей

Биполярный

Основные элементы шагового двигателя – ротор и статор. Первый представляет собой постоянный двухполюсный магнит. Он располагается на валу устройства. Статор – это замкнутый магнитопровод в виде кольца, он состоит из двух обмоток, половинки которых находятся на противоположных полюсах. На обмотке АВ – вертикально размещенные, на СD – горизонтально расположенные.

  1. При подаче напряжения на АВ появляется магнитное поле статора. Сверху полюс N, внизу S. Так как разноименные полюса притягиваются, ротор двигателя займет положение, при котором ось его магнитного поля совпадет с осью работающих АВ. Такое расположение ротора двигателя является очень устойчивым, если попытаться его сдвинуть, возникнет сила, которая будет его возвращать назад.
  2. Напряжение с обмотки АВ снимается и подается на обмотку CD, в результате чего возникает магнитное поле, в котором полюса расположены горизонтально – справа N, а слева S. Соответственно, постоянный магнит ротора расположится по горизонтальной оси, проделав минимальный путь – повернувшись на четверть оборота. Это будет шагом двигателя.
  3. Каждая последующая коммутация (со сменой полярности при подключении обмотки) заставит ротор поворачиваться на одну четвертую окружности. На полный оборот потребуется четыре шага. Частота вращения пропорциональна частоте переключения фазных обмоток. Если подключать фазы, меняя полярность в противоположной последовательности, ротор шагового двигателя будет вращаться в обратную сторону.

Униполярный

Выше был описан принцип работы биполярного шагового двигателя – у него для каждой фазы предусмотрено две обмотки. Чтобы менять магнитное поле, необходимо каждую обмотку:

  • отключить от источника электротока,
  • подключить в прямой полярности,
  • подключить в обратной полярности.

Осуществить коммутацию позволяет мостовой драйвер, который представляет собой сложную микросхему. Такой вариант подходит, если ток коммутации не превышает 2 А. Решить вопрос с управлением биполярным двигателем значительно сложнее при потребности в больших коммутационных токах. Значительно проще менять магнитное поле в статоре шагового двигателя, если использовать устройство с униполярными обмотками. В этом случае один вывод у всех четырех обмоток подсоединен к плюсовому выводу, а А, В, С и D последовательно подсоединяются к минусовому сигналу. В результате при каждой коммутации создается магнитное поле, заставляющее ротор двигателя повернуться. Коммутация по такому принципу обеспечивается четырьмя ключами, которые замыкают обмотки на землю. Управление ключами обычно осуществляется с выводов микроконтроллера.

При выборе шагового двигателя следует учитывать, что биполярный, при тех же габаритах, что и униполярный, обеспечивает больший крутящий момент. Выигрыш достигает 40 %. Это связано с тем, что в шаговом униполярном двигателе задействуется одна обмотка, а в биполярном две. Преимуществом устройства с одной обмоткой является простое управление.

Виды шаговых двигателей

Существует несколько разновидностей. К наиболее востребованным относятся модели с переменным магнитным сопротивлением, с постоянным магнитом и гибридные.

Устройства с переменным магнитным сопротивлением

Такие шаговые двигатели не имеют постоянных магнитов в роторе. Для изготовления ротора зубчатой формы используется магнитомягкий материал. Его вращение обеспечивается за счет замыкания магнитного поля статора через зубцы, располагающиеся вблизи полюсов. Зубцы к полюсам притягиваются и ротор поворачивается. Шаговые двигатели с переменным магнитным сопротивлением имеют небольшой крутящий момент в сравнении с моделями других типов при тех же габаритах. Это ограничивает сферу их применения.

Устройства с постоянными магнитами

На примере такого устройства выше разъяснялся принцип работы шаговых двигателей. В реальности роторы таких двигателей имеют несколько постоянных магнитов. От их количества зависит число шагов, за которое ротор выполняет полный оборот. Максимальное значение – 48, угол шага при этом составляет 7,5 градусов.

Гибридные устройства

В конструкции шаговых гибридных двигателей присутствует и зубчатый ротор, и постоянные магниты. Функционирует устройство по тому же принципу, что и двигатель с постоянными магнитами, но гибридный вариант отличается большим числом полюсов. За счет такого количества полюсов у гибридных шаговых двигателей больший момент, выше скорость и меньше величина шага. Максимальное число на один оборот может доходить до 400, при этом угол шага составляет 0,9 градусов. Гибридные устройства сложнее в изготовлении и дороже шаговых устройств других типов, но благодаря высокой функциональности пользуются спросом.

Особенности управления

Для управления двигателем с дискретным движением ротора используются следующие режимы: полношаговый, полушаговый и микрошаговый.

Полношаговый режим

При таком способе двигателем производится попеременная коммутация фаз. При этом к источнику напряжения фазы подключаются попеременно без перекрытия. Точки равновесия ротора при таком управлении совпадают с полюсами статора. К недостаткам полношагового режима относят то, что в каждый момент времени у биполярного двигателя используется половина обмоток, а у униполярного лишь четверть. Если подключить две фазы на полный шаг, то ротор будет зафиксирован между полюсами статора благодаря подаче питания на все обмотки. При этом увеличивается крутящий момент шагового двигателя, а положение ротора в состоянии равновесия смещается на полшага. Угол шага при этом остается неизменным.

Полушаговый режим

Если каждый второй шаг включать одну фазу, а между этим включать сразу две, можно увеличить количество перемещений на один оборот в два раза. Такая коммутация, соответственно, в два раза уменьшает угол шага. При этом достичь полного момента в полушаговом режиме невозможно. Режим активно используется, так как позволяет простым способом вдвое увеличить число шагов двигателя. Важно учитывать, что при снятии напряжения со всех фаз в полношаговом и полушаговом режиме ротор остается в свободном состоянии и может произойти его смещение при механических воздействиях. Для фиксации ротора требуется в обмотках двигателя формировать ток удержания. Обычно его значение намного меньше номинального. Благодаря способности шагового двигателя фиксировать положение ротора при остановке отсутствует необходимость использовать тормозную систему, фиксаторы и иные приспособления.

Микрошаговый режим

Чтобы максимально увеличить число шагов двигателя, используется микрошаговый режим. Для этого требуется включить две фазы и распределить ток обмоток неравномерно. При смещении магнитного поля статора относительно полюсов смещается и сам ротор. У диспропорции токов между рабочими фазами двигателя обычно наблюдается дискретность, которая определяет величину микрошага. Количество микрошагов на один оборот ротора шагового двигателя может составлять более 1 000. Устройство, работающее в таком режиме, можно максимально точно позиционировать. Однако данный способ управления является достаточно сложным.

Основные достоинства

К достоинствам шаговых двигателей относят:

  • точное позиционирование, которое не требует обратной связи. Угол поворота определяется числом электрических импульсов;
  • полный крутящий момент, который двигатель обеспечивает при снижении скорости вращении и до полной остановки;
  • фиксацию положения шагового двигателя при помощи тока удержания;
  • высокую точность регулировки скорости вращения без необходимости использования обратной связи;
  • быстрый старт и остановку двигателя, реверс;
  • высокую надежность. Устройства долговечны благодаря отсутствию коллекторных щеток.

Основные недостатки

К недостаткам шаговых двигателей можно отнести:

  • относительно невысокие скорости вращения;
  • сложную систему управления;
  • риск эффекта резонанса;
  • риск потери позиционирования ротора шагового двигателя под воздействием механических перегрузок;
  • низкую удельную мощность.

Характеристики

Двигатель шагового типа является сложным механическим и электротехническим устройством. Список основных характеристик, которые следует учитывать при выборе устройства, включает:

  • сопротивление обмотки фазы. Показатель сопротивления обмотки при работе на постоянном токе;
  • число полных шагов за один оборот ротора. Это основной параметр шагового двигателя, который определяет точность позиционирования, плавность движения, разрешающую способность;
  • угол полного шага. Это величина угла, на который поворачивается ротор за одно перемещение. Для расчета можно разделить 360° на количество шагов;
  • номинальный ток. Наибольшее значение тока, при котором двигатель может работать неограниченно долгое время;
  • номинальное напряжение. Максимально допустимое постоянное напряжение на обмотке при статическом режиме шагового двигателя;
  • сопротивление изоляции. Величина сопротивления между корпусом и обмотками;
  • момент инерции ротора. Чем меньше инерционность ротора, тем он быстрее разгоняется;
  • крутящий момент. Для шагового двигателя это ключевой механический параметр. Указывается максимальное значение для конкретной модели двигателя;
  • пробивное напряжение. Показатель минимального напряжения, при котором возникает пробой изоляции между корпусом и обмотками;
  • индуктивность фазы. Данный параметр принимают во внимание, если от двигателя требуется высокая скорость вращения. От него зависит скорость увеличения тока в обмотке. Если фазы следует переключать с высокой частотой, необходимо увеличивать напряжение для быстрого нарастания тока;
  • удерживающий момент. Это показатель крутящего момента при остановленном шаговом двигателе и при двух фазах, запитанных номинальным током.

Сфера применения

Шаговые двигатели рассчитаны на использование в составе устройств с дискретным управлением, где необходимо точно позиционировать исполнительные механизмы. Также они применяются в промышленном оборудовании с программным управлением, где требуется обеспечить непрерывное движение по заданной траектории и импульсное влияние исполнительными механизмами. Ротор шагового двигателя способен поворачиваться на заданный угол и на определенное количество оборотов вокруг своей оси. Благодаря этому шаговые устройства позволяют позиционировать считывающие головки проигрывателей оптических дисков, дисковых накопителей, печатающих головок сканеров, принтеров и иных устройств. Такие двигатели широко используются не только на производстве и в составе бытовой техники. Эти устройства востребованы радиотехниками, робототехниками, мастерами-любителями, изготавливающими самодельные станки с ЧПУ, движущиеся устройства и т. д. Для управления применяются специально разработанные контроллеры либо сложные электронные схемы. Управлять импульсными сигналами, заставляющими двигатель работать в заданном режиме, также можно через порт компьютера.


Твитнуть

Поделиться

Поделиться

Плюсануть

Класснуть