Выбор и расчёт пускового конденсатора для трехфазных машин

Бывает необходимость использовать трёхфазный двигатель в бытовой однофазной сети, при этом сразу возникают вопросы:

  • какие двигатели можно использовать для этих целей;
  • какую выбрать схему подключения;
  • какие элементы могут понадобиться;
  • нужно ли производить расчёт пускового конденсатора.

Об этих и некоторых других вопросах мы поговорим в данной статье.

Асинхронные электродвигатели

В современной промышленности и в быту наибольшее распространение получили электродвигатели переменного тока. Это обусловлено рядом преимуществ:

  • простота конструкции;
  • надёжность;
  • долговечность;
  • высокая эффективность;
  • хорошие массогабаритные показатели.

Всё это привело к тому, что это не только самые распространённые, но и наиболее доступные электродвигатели с точки зрения цены и возможности их приобретения для обычных людей.

Прежде чем перейти непосредственно к теме пусковых конденсаторов, необходимо понять принципы работы этих машин. Есть три основных типа.

  1. Асинхронные с короткозамкнутым ротором.
  2. Асинхронные с фазным ротором.
  3. Синхронные.

Скорее всего, вы столкнётесь с необходимостью подключения первого типа двигателей, поэтому о них мы и будем говорить в дальнейшем.

Конструктивно электродвигатель состоит из неподвижного элемента — статора и вращающегося — ротора. На статоре намотана обмотка из медных проводов, концы и начала которых выведены в клеммную коробку. Обмотка ротора представляет собой алюминиевые стержни, залитые в специальные пазы в металлическом сердечнике ротора и замкнутые по краям кольцами из того же материала (поэтому данные машины и называются короткозамкнутыми). Вращение ротора возникает в результате взаимного воздействия магнитных полей статора и ротора друг на друга. В подавляющем большинстве случаев эти машины трёхфазные.

Принцип работы электродвигателя

При подключении электродвигателя к трёхфазной сети в статоре будет наводиться вращающееся магнитное поле, ротор начинает вращаться. Если же такой двигатель подключить к бытовой однофазной сети, магнитное поле машины будет пульсирующим и двигатель вращаться не будет.

Объяснить это состояние двигателя можно так. Представьте циферблат, где двенадцать часов, это точка, с которой двигатель начинает вращаться. Пульсирующее магнитное поле толкает ротор с одинаковой силой то вправо, то влево. Происходит это с большой частотой, и из-за инерционности ротора он не успевает разогнаться ни влево, ни вправо, при этом двигатель соответствующим образом гудит. Это опасное состояние, при котором он быстро перегревается и без использования защитных средств выйдет из строя. Если в этот момент рукой провернуть вал ротора в любую сторону, то двигатель начнёт вращаться.

Запускать электродвигатель таким способом неудобно, не всегда возможно и небезопасно. Поэтому при подключении трёхфазных двигателей к однофазной сети используют пусковой конденсатор, он позволяет сместить магнитное поле одной из обмоток и тем самым создать пусковой момент, под действием которого ротор начнёт вращаться.

Подключение трёхфазного электродвигателя к однофазной сети

Прежде чем производить расчёт ёмкости, необходимо убедиться, что двигатель может быть использован для сети 220 Вольт. Для начала смотрим на шильдик (металлическая пластинка с характеристиками) электродвигателя. Если там указано, что возможна работа при напряжении 380/220 Вольт или 220/127 Вольт, то такой двигатель нам подходит. Имейте в виду, что большее напряжение применяется при подключении электродвигателя звездой, а меньшее — при подключении треугольником.

На статоре намотано три одинаковых обмотки, при подключении звездой начала всех обмоток соединены в одну точку, а к концам подключается питающее напряжение. При подключении треугольником конец первой обмотки подключается к началу второй, конец второй — к началу третьей, конец третьей — к началу первой, а питающее напряжение подключается к точкам соединения двух обмоток.

Теперь вскрываем клеммную коробку и смотрим, как соединены обмотки. Начала и концы обмоток имеют следующее обозначение (в скобках указана новая маркировка):

  • первая С1 (U1) — C4 (U2);
  • вторая C2 (V1) — C5 (V2);
  • третья C3 (W1) — C6 (W2).

Определить тип подключения можно при помощи подсказки, расположенной на внутренней стороне клеммной коробки.

При любой схеме подключения от двигателя будет идти три провода. В случае с однофазной цепью к двум из них подводится питающее напряжение, а третий провод соединяется с сетью через ёмкость, это и есть конденсатор для запуска двигателя и его работы. Для нормальной работы необходимо, чтобы этот конденсатор был подключён постоянно, и поэтому он называется рабочим. Конденсатор, который подключается для создания высокого пускового момента, называется пусковым.

Рабочий конденсатор

Подбор ёмкости для трехфазного электродвигателя — не такая простая задача, как может показаться. Для устойчивой работы в однофазной сети смещение магнитного поля в третьей обмотке должно присутствовать постоянно, для этого и рабочий конденсатор подключён к сети всё время работы двигателя. Поэтому конденсатор для пуска электродвигателя должен быть пригодным для длительной работы в сетях переменного тока.

В первую очередь, это специально изготовленные для этих целей конденсаторы с соответствующим рабочим напряжением. На корпусе таких элементов, кроме номинальной ёмкости, изображён значок переменного напряжения и указана его величина. В нашей сети напряжение 220 Вольт, значит, номинальное напряжение конденсатора должно быть больше или равно этой величине.

В советское время были широко распространены металлизированные бумажные герметизированные конденсаторы типа МБГО и аналогичные им. Благодаря тому, что они обладают хорошими показателями ёмкости и рабочего напряжения, а также из-за их надёжности они до сих пор широко используются домашними мастерами, в том числе и в качестве рабочих конденсаторов при переделке двигателей. На корпусе таких конденсаторов указано постоянное рабочее напряжение, поэтому нужно, чтобы оно превышало напряжение сети не менее чем в полтора раза. Для наших целей подойдут те, у которых рабочее напряжение выше 400 Вольт.

Расчёт конденсатора для трёхфазного двигателя

Для точного определения величины ёмкости конденсатора нужно провести несложный расчёт. При желании в сети можно найти онлайн-калькулятор, предназначенный для этих целей, или таблицы, в которых указаны различные мощности двигателей и соответствующие им величины ёмкости конденсаторов. Если есть необходимость произвести расчёт самостоятельно, то формулы имеют следующий вид:

Ср = (2800 · I) / Uc

Ср = (4800 · I) / Uc

Где:

  • Ср — величина ёмкости, мкФ;
  • 2800 коэффициент для схем с подключением звездой;
  • 4800 коэффициент для схем с подключением треугольником;
  • I — ток в схеме, А;
  • Uc — напряжение сети, В.

Ток можно рассчитать по формуле:

I = P / (1,73 · Uc · cosφ · η)

Где:

  • Р — мощность, Вт;
  • cosφ — коэффициент мощности;
  • η — КПД.

Все необходимые для расчёта данные можно найти на шильдике машины. При их отсутствии запомните, что для этого типа машин коэффициент мощности составляет примерно 0.9, а КПД около 0.75.

Для примера, произведём расчёт ёмкости конденсатора для двигателя мощностью 2 кВт при его включении треугольником к сети переменного тока напряжением 220 В. Рассчитаем ток в схеме (мощность из киловатт переводим в ватты):

I = P / (1,73 · Uc · cosφ · η)

= 2019 / (1,73 · 220 · 0,9 · 0,75) = 7,78 А

Тогда ёмкость:

Ср = (4800 · I) / Uc

= (4800 · 7,78) / 220 = 169,7 мкФ

В результате получили, что необходима ёмкость в 170 микрофарад. В продаже вы не найдёте конденсатор такой ёмкости для напряжения 220 В, но его можно собрать из нескольких, руководствуясь следующими формулами расчёта суммарной ёмкости:

  • при параллельном соединении С = С1 + С2;
  • при последовательном соединении С = (С1 · С2) / (С1 + С2).

Величина ёмкости собранной батареи может несколько отличаться от расчётной, но следует помнить, что увеличение ёмкости приведёт к росту тока в обмотках двигателя и, как результат, к его повышенному нагреву, поэтому лучше подобрать ёмкость батареи меньше расчётной.

Величина ёмкости зависит и от нагрузки на валу. Так как учесть эту величину при расчёте затруднительно, а ещё из-за того, что номинальные ёмкости конденсаторов могут отличаться от указанных на них, крайне желательно после запуска и выхода электродвигателя на рабочие обороты проверить токи в обмотках, и если они выше номинальных, то необходимо уменьшить суммарную ёмкость батареи.

Выбор пускового конденсатора для электродвигателя

Для устойчивого пуска и работы двигателей сравнительно небольшой мощности достаточно рабочего конденсатора, но для мощных машин необходимо применение пускового конденсатора. В схему он включается параллельно рабочему через выключатель. В отличие от рабочего, на пусковой напряжение подаётся только в момент пуска, и после разгона электродвигателя он отключается. Его величина выбирается из расчёта две или три величины ёмкости рабочего конденсатора.

Конденсаторы для запуска электродвигателя подключаются всего на несколько секунд, поэтому для бытовых нужд в качестве пусковых можно применять электролитические (полярные) конденсаторы. Их плюс в том, что они обладают значительно большей ёмкостью, чем неполярные, при тех же размерах и значительно дешевле. Много таких конденсаторов в старых ламповых телевизорах, так что найти их не составит особого труда. Требования по напряжению такие же, как и к рабочим конденсаторам.

Однофазные двигатели переменного тока

Большая потребность в двигателях переменного тока для бытовых нужд привела к появлению однофазных машин. Отличие их от ранее рассмотренных в том, что на их статоре расположено не три, а две обмотки: пусковая и рабочая. Как и для трёхфазных машин, для их работы в пусковой обмотке необходим фазосдвигающий элемент, поэтому схема подключения однофазного двигателя содержит конденсатор.

В завершение хотелось бы отметить, что при конденсаторной схеме включения трёхфазных двигателей в бытовую сеть их характеристики становятся значительно хуже.

  1. Мощность уменьшается примерно на 30%, что в некоторых случаях делает невозможным эксплуатацию электрооборудования. Решить эту проблему можно заменой электродвигателя на более мощный.
  2. Небольшой пусковой момент. Это ещё один значительный недостаток такой схемы подключения, поэтому запускать такие двигатели желательно без нагрузки.
  3. Низкий КПД и коэффициент мощности.

Что касается частоты вращения, то она остаётся неизменной и соответствует номинальной.

При монтаже и наладке схемы необходимо строго соблюдать правила техники безопасности. Не забывайте, что в схеме присутствуют конденсаторы, поэтому после отключения питания необходимо дать им время для разрядки, прежде чем касаться токопроводящих частей схемы.

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Онлайн калькулятор расчета емкости конденсатора

Расчет емкости конденсатора22:

Обновлено:

02.10.2016

При подключении асинхронного электродвигателя в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз на обмотках статора, чтобы сделать имитацию вращающегося магнитного поля (ВМП), которое заставляет вращаться вал ротора двигателя при подключению его в «родные» трехфазные сети переменного тока. Известная многим, кто знаком с электротехникой, способность конденсатора давать электрическому току «фору» на π/2=90° по сравнению с напряжением, оказывает хорошую услугу, так как это создает необходимый момент, заставляющий вращаться ротор в уже «не родных» сетях.

Калькулятор расчета рабочего и пускового конденсаторов

Но конденсатор для этих целей необходимо подбирать, причем нужно делать с высокой точностью. Именно поэтому читателям нашего портала предоставляется в абсолютное безвозмездное пользование калькулятор расчета емкости рабочего и пускового конденсатора. После калькулятора будут даны необходимые разъяснения по всем его пунктам.

Калькулятор расчета емкости рабочего и пускового конденсаторов

Перейти к расчётам

Для расчета использовались следующие зависимости:

Полученные из калькулятора данные можно использовать для подбора конденсаторов, но именно таких номиналов, как будет рассчитано, их вряд ли можно будет найти. Только в редких исключениях могут быть совпадения. Правила подбора такие:

  • Если есть «точное попадание» в номинал емкости, который существует у нужной серии конденсаторов, то можно выбирать именно такой.
  • Если нет «попадания», то выбирают емкость, стоящую ниже по ряду номиналов. Выше не рекомендуется, особенно для рабочих конденсаторов, так как это может привести к ненужному возрастанию рабочих токов и перегреву обмоток, которое может привести к межвитковому замыканию.
  • По напряжению конденсаторы выбираются номиналом не менее, чем в 1,5 раза больше, чем напряжение в сети, так как в момент пуска напряжение на выводах конденсаторов всегда повышенное. Для однофазного напряжения в 220 В рабочее напряжение конденсатора должно быть не менее 360 В, но опытные электрики всегда советуют использовать 400 или 450 В, так как запас, как известно, «карман не тянет».

Приведем таблицу с номиналами конденсаторов рабочих и пусковых. В качестве примера приведены конденсаторы серий CBB60 и CBB65. Это полипропиленовые пленочные конденсаторы, которые наиболее часто применяют в схемах подключения асинхронных двигателей. Серия CBB65 отличается от CBB60, тем, что они помещены в металлический корпус.

В качестве пусковых применяют электролитические неполярные конденсаторы CD60. Их не рекомендуются применять в качестве рабочих так как продолжительное время их работы делает их жизнь менее продолжительной.. В принципе, для пуска подходят и CBB60, и CBB65, но они имеют при равных емкостях более объемные габариты, чем CD60. В таблице приведем примеры только тех конденсаторов, которые рекомендованы к использованию в схемах подключения электродвигателей.

  Полипропиленовые пленочные конденсаторы CBB60 (российский аналог К78-17) и CBB65 Электролитические неполярные конденсаторы CD60
Изображение
Номинальное рабочее напряжение, В 400; 450; 630 В 220—275; 300; 450 В
Емкость, мкф 1,5; 2,0;2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 мкф 5,0; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 2019 мкф

Для того, чтобы «набрать» нужную емкость, можно использовать два и более конденсатора, но при разном соединении результирующая емкость будет отличаться. При параллельном соединении она будет складываться, а при последовательном — емкость будет меньше любого из конденсаторов. Тем не менее такое соединение иногда используют для того, чтобы, соединив два конденсатора на меньшее рабочее напряжение, получить конденсатор, у которого рабочее напряжение будет суммой двух соединяемых. Например, соединив два конденсатора на 150 мкф и 250 В последовательно, получим результирующую емкость 75 мкф и рабочее напряжение 500 В.

Последовательное и параллельное соединение конденсаторов

Для того чтобы рассчитать емкость двух последовательно соединенных конденсаторов, читателям предоставляется простой калькулятор, где надо просто выбрать два конденсатора из ряда существующих номиналов.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсаторов

Перейти к расчётам

Возможно ли самому подключить трехфазный асинхронный двигатель в сеть 220 В?

Обычно эту операцию доверяют только электрикам, имеющим практический опыт. Однако, подключить двигатель можно и самому. Это доказывает статья нашего портала: «Как подключить трехфазный двигатель в сеть 220 В».

Рекомендуемые статьи по теме

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2019 для схемы «звезда» и 2019 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.